Riemann surface - significado y definición. Qué es Riemann surface
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Riemann surface - definición


Riemann surface         
  • The Riemann sphere.
  • A torus.
ONE-DIMENSIONAL COMPLEX MANIFOLD
Riemann surfaces; Compact Riemann surface; Open Riemann surface; Riemann's surface; Conformally invariant; Riemann Surface; Riemann Surfaces; Riemann-surface; Riemann-surfaces; Riemannsurface; Riemannsurfaces; Compact riemann surface; Conformaly invariant; Conformal invariant
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann.
Riemann–Roch theorem for surfaces         
In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by , after preliminary versions of it were found by and .
Riemann–Hilbert problem         
CLASS OF PROBLEMS THAT ARISE IN THE STUDY OF DIFFERENTIAL EQUATIONS IN THE COMPLEX PLANE
Riemann-Hilbert problem; Riemann-Hilbert factorization; Riemann-Hilbert; Riemann–Hilbert; Riemann–Hilbert problems; Riemann-Hilbert problems; Riemann–Hilbert factorization
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others (see the book by Clancey and Gohberg (1981)).